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Abstract 

Within the framework of the static concentration-wave 
method, by means of the geometrically complete 
procedure, the list of all types of thermodynamically 
stable, with respect to macroscopic inhomogeneities 
(Lifshitz), ordered structures arising from the disordered 
state of binary substitutional solid solutions with a 
hexagonal crystal lattice is established, as is the list of 
corresponding isomorphic interstitial structures based on 
simple hexagonal and h.c.p, crystal lattices. 

1. Introduction 

A statistical description of structures with long-range 
order in solid solutions can be reduced to the setting up 
of a Fourier series of one-particle distribution functions 
(Krivoglaz, 1969; Khachaturyan, 1973, 1978, 1983; de 
Fontaine, 1979). From this, the problem arises of the 
determination of the wave vectors over which the 
summation in these series is to be carried out. 

Lifshitz (1942), considering [within the Landau (1937) 
approach] the symmetry aspects of the problem of 
structural phase transformations of second order, 
ascertained that only the structures characterized by the 
basis functions of irreducible representations (of the 
space symmetry group of the system at the point of the 
phase transformation), which correspond to the stars of 
the wave vectors whose symmetry groups contain the 
symmetry elements (from the crystal class of  that space 
group), intersecting at one point can be thermo- 
dynamically stable with respect to the violations of the 
macroscopic homogeneity (the Lifshitz criterion).t 
Khachaturyan (1973, 1978, 1983) proved the applic- 
ability of the Lifshitz criterion to the case of the structural 
phase transformations of first order. 

The complete list of the Lifshitz superstructures arising 
as a result of the order-disorder phase transitions in 
binary solid solutions with cubic (f.c.c. and b.c.c.) crystal 

~f The first Brillouin zone points corresponding to such wave vectors a r e  

usually termed the high-symmetry or the Lifshitz points and these wave 
vectors themselves and the superstructures corresponding to them (see 
§2) are usually termed the Lifshitz vectors and the Lifshitz super- 
structures, respectively. 
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lattices was established by Lifshitz (1942), Khachaturyan 
(1973, 1978, 1983), Gufan & Dmitriev (1982) and 
Bugaev & Chepul'skii (1995), and with the h.c.p, lattice 
by Lifshitz (1942), Zhorovkov, Fuks & Panin (1975), 
Gufan (1982), Sanchez, Gratias & de Fontaine (1982), 
Solov'eva & Shtem (1990) and Zhorovkov (1993). The 
case of the hexagonal crystal lattice was considered by 
Bugaev (1978), in which some (six types) Lifshitz 
superstructures were found. 

The aim of the present paper is to find within the static 
concentration-wave method (Khachaturyan, 1973, 1978, 
1983), by means of the geometrically complete proce- 
dure, the full list of the Lifshitz superstructures arising 
from the disordered state of the binary solid solutions 
with the simple hexagonal crystal lattice. 

The superstructures that can be described on the basis 
of the simple hexagonal crystal lattice are widely 
observed in experiment, e.g. in the case of interstitial 
ordered structures at the octahedral interstices'~ of a h.c.p. 
crystal lattice (Fromm & Gebhardt, 1976). The results 
obtained in the present work can also be useful for the 
investigation of those reconstructive transitions whose 
mechanism cannot be formulated in terms of atomic 
displacement and which should be interpreted as a 
transition between the ordered phases derived from a 
common disordered hexagonal latent parent structure 
(see e.g. Dmitriev, Rochal, Gufan & Toledano, 1989). 

2. The procedure for finding superstructures 

It is suitable to represent the function that characterizes 
the space symmetry of the system under consideration as 
a series over the functions realizing the irreducible 
representations of the space symmetry group G O of the 
system at the point of phase transformation (Landau, 
1937; Lifshitz, 1942; Landau & Lifshitz, 1980). From 
this, to every irreducible representation (excluding the 
unity one) its own long-range-order parameter is 
matched. Non-zero values of these parameters make the 
corresponding lowering of the space symmetry of the 
system available. 

1" The set of octahedral interstices in a h.c.p, crystal lattice forms the 
simple hexagonal crystal lattice (from the crystallographic standpoint). 
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In the framework of the lattice-gas model, let us 
describe the space symmetry of the atomic distribution in 
a binary solid solution by the function P(R), which 
means the probability of f'mding the impurity atom* at 
the corresponding crystal-lattice position with the radius 
vector R. Let the set of all positions R form a Bravais 
lattice and the group G O be the space symmetry group of 
this lattice.I" In this case, the irreducible representations 
of the group G O are numerated only by the stars k s 
(s = 1, 2 . . . .  ) of the wave vectors that belong to the first 
Brillouin zone of the corresponding reciprocal crystal 
lattice:~ and the basis functions of the irreducible 
representation corresponding to some star k s -- 
{kl, , k2,  . . . .  kt, } (kj, are the wave vectors belonging 
to the same star s) are the functions (Lifshitz, 1942; 
Landau & Lifshitz, 1980) 

exp(ik l,R), exp(ik2, R) . . . . .  exp(ikt, R). 

Thus, one can write the above-mentioned series in terms 
of the basis functions of the irreducible representations of 
the group G O in the general form 

P(R) = c  + ~ ~Ts~ys(js)exp(ikjR), (1) 
s#0 j, 

where the summation is carried over all stars of the wave 
vectors from the first BriUouin zone (excluding its center: 
s # 0) and over all vectors of these stars; c = n/N is the 
concentration of the impurity (n and N are the total 
numbers of the impurity atoms and of the crystal lattice 
positions, respectively); 77 s are the long-range-order 
parameters; Ys(Js) are the coefficients that determine 
the symmetry of the function P(R). In (1), the coefficient 
corresponding to the 'zero'  star is assumed to be equal to 
c, which makes the equality P ( R ) =  c (for any R) 
satisfied in the disordered state of the solid solution, 
when all parameters of long-range order are equal to 
zero. 

In (1), the designations adopted in the static concen- 
tration-wave method (Khachaturyan, 1973, 1978, 1983) 
are used. Two conditions are used for finding super- 
structures within this method. 

Firstly, for the unambiguous definition of the long- 
range-order parameters, one must impose the normal- 
ization condition (Landau, 1937; Landau & Lifshitz, 
1980). It is conveniently chosen in the form:§ 

* For definiteness, let the sort of atom with the least concentration in the 
binary solid solution be termed the impurity. Therefore, the space 
distribution of the atoms of the host is described by the function 
1 - P(R). 
1" As a result, the space symmetry group of any superstructure is a 
subgroup of the group G O (in the lattice-gas model). 

Classification by the number of small representations is therefore 
absent. 
§Such a normalizat;.on condition provides the coincidence of the 
definition of the long-range-order parameters in the framework of the 
static concentration-wave method with their classic definition in terms 
of the occupation probabilities (see e,g. Krivoglaz & Smirnov, 1964). 

Condition 1. In the completely ordered state of the 
solid solution [when the function P(R)  at any R takes 
only two values, zero or unity, and c = Cst, where Cst is 
the stoichiometric concentration of the superstructure], 
all non-zero long-range-order parameters should be equal 
to unity. 

Secondly, for (1) to describe the structures with long- 
range order, the following condition, which reflects the 
conservation of the number of the structural degrees of 
freedom, should be satisfied: 

Condition 2. The number of non-zero long-range-order 
parameters in series (1) should be fewer by unity than the 
total number of different values that the function P(R)  
takes at all positions R (under the arbitrary allowable 
values of these long-range-order parameters). 

The following procedure is used in this work for 
finding (within the static concentration-wave method) the 
complete set of Lifshitz superstructures arising from the 
disordered state of the solid solutions with a hexagonal 
crystal lattice.* 

On condition that the solution is in a completely 
ordered state, (1) can be written for some (defined below) 
sites R m for every possible combination of I (l = 1, 2, . . . )  
Lifshitz stars [with n s wave vectors in every star s 
(s = 1, 2 . . . . .  l)] in the following general form: 

l ns 

Pm = Cst + ~ ~ Ys(Js) exp(tkj, Rm), 
s=l j s=l  

l 
m = l , 2  . . . . .  y~n ,  + 1. (2) 

s = l  

In (2), all long-range-order parameters are put equal to 
unity, c = cst, and the values Pm of the function P(R) at 
corresponding positions Rm must equal zero or unity, in 
accordance with condition 1. The set of positions {Rm} 
are chosen in such a way that the main determinant of the 
set of equalities (2), considered as a set of linear 
inhomogeneous equations in unknowns Cst and {Ys(J,)}, 
is not equal to zero. Solving this set of equations for all 
possible distributions of zeros and unities over the values 
of Pro, we find the complete assemblage {cst, {Ys(Js)}} of 
those packages Cst and {Ys(Js)} that satisfy condition 1 
within the chosen set {Rm}. It is obvious that the 
assemblage of the solutions found in the above- 
mentioned way must contain (as a subset in general) 
all those packages Cst and {Ys(Js)} that make condition 1 
satisfied within all positions {R}. 

In the final stage of the procedure, we exclude those 
packages from {Cst, {Ys(js)}j t that do not meet conditions 
1 and 2 within all positions {R}.* 

* Note that this procedure, without any change, can be used for finding 
both the Lifshitz and the non-Lifshitz superstructures in binary solid 
solution based on any Bravais lattice. 
tOwing to the periodicity of the functions exp(tl~jR) {and, 
consequently [see (1) and (2)], of the corresponding functions P(R)}, 
it is necessary to check for this purpose (by the direct substitution of 
corresponding coordinates) only a finite (not usually large) number of 
positions R, limited by the periods of the function P(R). 
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Table 1. Characteristics of the hexagonal superstructures described by the expansion (3) in terms of A, K and H stars 

(a) (b) Cst ~/a Yx (1) YK (2) Yn (1) Yn (2) /-'a FK F'n Pi v~ Fig. (c) 

1 AB ½ ½ 0 0 0 0 ¼ 0 0 c +  1/204 1/2 • 
c -  1/2r& 1/2 2(a) o 

2 azB ½ 0 ~ ½ 0 0 0 ~ 0 c + 2/3rlx 113 • 
c -  1/3rlx 2/3 2(b) o 

3 A2B ½ 0 - g - ~ 2x~3 2 ~ '  0 ~ ~ c + l/6rlx + 1/2rl n 113 • 
c + 1/6qx - 1/20u 113 o 
c -  1/30x 1/3 2(c) ® 

4 t a B  ~ ~ ~ ~ ~ ~ ~ ~ ~ c + 1/60a - 1/6rlx - 1/6rln 113 ® 
c - 1/6qa - 1/60K + 1~6tin 113 o 
c + l/6rla + 1/3r1~ + l/3rl n 1/6 • 
c -- 1/6rla + 1/30X -- 1/30n 1/6 2(d) ~) 

5 A2B ½ ½ - ~  - ~  - ~  - ~  ~ ~ ~ c + l / 3 r l a + l / 6 r l K + l / 6 r l  n 1/3 , 

c - 1/3qa + 1/07K -- 1~6On 113 o 
c + 1/3r/a - 1/3rlr - 1/3rl n 1/6 ® 
c - 1/3r/a - 1~3fir + 1/3rl n 1/6 2(e) 

(a) Number of the superstructure. (b) Stoichiometric structural formula. (c) Designations of the lattice sites of different types on the corresponding 
figure. 

Table 2. Characteristics of the hexagonal superstructures described by the expansion (4) in terms of A, M and L stars 

(a) (b) c,t Ya YM(1) yM(2) YM(3) yL(1) yL(2) yL(3) 
1 AsB ¼ 0 ¼ ¼ ¼ 0 0 0 

2 AB ½ 0 ½ 0 0 0 0 0 

S a~ ½ 0 0 0 0 ½ 0 0 

4 A3B ¼ 0 ¼ 0 0 0 ¼ ¼ 

5 ATB ~ ~ ~ ~ ~ ~ ~ 

6 AsB ~ ¼ ¼ 0 0 ~ 0 0 

7 A3B 5 ~ ~ - I  ~ ~ - ~  ~ 

(a), (b), (c) are the same as in Table 1. 

l"a I-'M I-'L Pi 1) i Fig .  (c) 

0 3 0 c + 3/4~7M 1/4 • 
C -  1/4r/~t 3]4 3(a) o 

0 ¼ 0 c + 1/20M 1/2 • 
c -  1/2rlM 1/2 3(b) o 

0 0 ¼ c + 1/20L 1/2 • 
c -  1/20L 1/2 3(C) o 

0 ~ ~ c +  1/4r/M + 1/2qL 1/4 • 
c + l/4rlM - 1/2OL 1/4 o 
c -  1/40M 1/2 3(d) ® 

A ~ 3 c +  1/80a + 3/81/M + 3/8~7L 1/8 • 
C -- 1/8r/a + 3/8r/M -- 3/80L 1/8 o 
c +  1/8qa -- l/Sr/M -- I/8OL 3/8 ® 
C -- 1/8rlA -- 1/817M + 1/8OL 3/8 3(e) ~) 

~6 ~ c + 1/417A + 1/4rlM + I/4rlL 114 
C -- l/4rla + 1/4r/M -- 1/4rlL 1/4 o 
c + l/4rla -- 1/4r/M -- 1/4qL 1/4 ® 
c -  l/4Oa -- 1/4rh¢ + l/4r/~. 1/4 3 ( f )  

9 3 3 c + 3/8r& + 1/8OM + 1/8OL 3/8 • 

c - 3/8r& + l/8r/M - 1/8rlL 3/8 o 
C + 3/8rlA -- 3/8r/M -- 3/8r/L 1/8 ® 
c -- 3/8rlA -- 3/8r/M + 3/8rlL I/8 3(g) 

3. The superstructures  in the hexagonal  lattice 

As a result of  the use of  the procedure described in §2, we 
found 12 types of  superstructure* in the case of  the 
hexagonal crystal lattice. It was revealed that for all these 
superstructures the combinations of  the Lifshitz stars A, 
K, H or stars A, M, L (of the reciprocal lattice of  the 
disordered solution with the hexagonal crystal latticet) 
can be present only separately in corresponding distribu- 
tion functions PAxn(R) and PAML(R) obtained through the 
use of  (1): 

*Note that six types of superstructure from the complete list given in 
the present work are equivalent to the superstructures obtained by 
Bugaev (1978). 
1" The standard designations of these stars are quoted, for example, by 
Kovalev (1965) .  

PAtcH(R) = c 4- OAYA exp(brh3) 

+ rlK(YK(1)exp[i(2sr/3)(hl 4- h2)] 

+ YK(2)exp[--i(2rc/3)(hl 4- h2)]) 

4- rin(yH(1)exp{br[2(hl 4- h2) 4- h3]} 

4- yn(2)exp{-irr[](hl + h2) 4- h3]}), 

PAuL(R) = C + OAYA exp(in'h3) 

+ r/M {~/M (1) exp(izrh 1) 

+ YM (2) exp(i:rh2) 

4- yM(3) exp[br(h 1 - h2)]} 

+ rh~{yL(1)exp[br(hl + h3)] 

+ YL(2)exp[irr(h2 4- h3)] 

+ yL(3) exp[irr(hl -- h 2 + h3)]}, 

(3) 

(4) 
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where the integers h x, h 2 and h a are the coordinates of  the 
vector R in the hexagonal  basis: 

R -- h la  1 + h2a 2 -t- h3a 3. (5) 

In (5), the basis translation vectors a i (i = 1, 2, 3) have 
the following orthogonal coordinates (see Fig. 1): 

al -- (a, 0, 0); a 2 --  ( -a /2 ,  a x 31/2/2, 0); a 3 -- (0, 0, c) 

(a and c are the parameters of  the hexagonal  crystal 
lattice). 

The stoichiometric compositions of  the superstruc- 
tures, the values of  the coefficients in corresponding 
series (3) and (4) and the references to the pictures for 
every superstructure are given in Tables 1 and 2, 
respectively.* See also Figs. 2 and 3. Moreover,  the 
values Fst, defined as 

F s -- ~ Iys(js)l 2 (6) 
L 

(for every star s), the expression Pi for the one-particle 
distribution functions for every ith sublattice 

mean-field self-consistent approach (Khachaturyan, 
1978, 1983; de Fontaine,  1979; Bugaev & Tatarenko,  
1989), 

F = (N/2)(f '(O)cZ + ~_~ fZ(ks)F, rt 2 } 
s¢:O 

+ N k s T ~ _ , v i { P i l n P i + ( 1 - P i ) l n ( a - P i )  }, (8) 
i 

where lT"(ks) is the value of  the Fourier t ransform of the 
mixing potential corresponding to some star k s of  the 
wave vectors, T is the absolute temperature and k s is the 
Boltzmann constant. 

Notice in conclusion that, for every substitutional 
superstructure in a binary solid solution based on a 
Bravais lattice, one can put in correspondence the 
isomorphic interstitial superstructure (see, for example,  
Khachaturyan,  1973, 1978, 1983) in which the 
interstitial atoms are distributed only with one interstitial 
(Bravais) sublattice isomorphically to the corresponding 

(i = 1, 2 . . . .  ) that contains N i sites symmetry  equivalent 
in the ordered state and the values of  v i, defined as 

v i -- Ni/N, (7) 

are also given in the tables. This additional information ~ i  
is sufficient for the determination of  the free energy F of  
corresponding superstructures under  the statistical- 
thermodynamic  description. For  example,  within the 

* The characteristics are quoted only for the superstructures with the 
stoichiometfic compositions cst < 0.5. The anti-isostructures with the 
stoichiometric compositions 1 - cst can be described by the change of 
the signs of all coefficients Fs(Js), corresponding to every superstructure 
from Tables 1 and 2. 
~" Note that it is easy to find from (1) and (6) that the sum of the values 
of Fs over all stars (with corresponding non-zero long-range-order 
parameters) is determined by the stoichiometric composition cst of the 
superstructure only: 

F~ = cst(1 - Cst ). 
s 

C 

Ot 

(a) (b) 

(c) (d) 

(e) 

Fig. 1. Hexagonal crystal lattice. Fig. 2. Superstructures determined in Table 1. 
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substitutional superstructure.* The stoichiometric com- 
position Cis~ t o f  the interstitial superstructure can be 
obtained from the stoichiometric composition Cst of the 
isomorphic substitutional superstructure by the use of the 
following relation: 

C~ t : Cst/(1 + Cst), (9) 

* In general, the assemblage of the interstices forms the complex (with 
the basis) crystal lattice. However, the case of interstitial-atom 
distribution predominantly within one of the interstitial sublattices only 
is widely observed in experiment. Such a situation can be caused by 
both the energy non-equivalence of the (symmetry different) interstitial 
sublattices and the strong repulsion between the interstitial atoms that 
occupy the neighboring (even energetically equivalent) sublattices (see 
e.g. Khachaturyan & Shatalov, 1975; Khachaturyan, 1983). 

i.e. one can connect the definite interstitial superstructure 
with the stoichiometric formula An+mX m to any given 
substitutional superstructure - AnB m (A, B are the 
designations of the atoms at the sites, X is the designation 
of the interstitials). Thus, for all substitutional super- 
structures quoted in Tables 1 and 2 (with the structural 
stoichiometric formulae AB, AB2, AB3, AB5, An 7 and 
AaBs), one can match up the interstitial superstructures 
(with the formulae A2X, AaX, A4X, A6X, AsX and AaX3, 
respectively), based on the simple hexagonal or h.c.p. 
crystal lattices. 

This work was partially supported by the State 
Committee on Science and Technologies of the Ukraine 
(grant no. 2.2/205). 

(a) (b) 

(c) 

(e) 

(d) 

( f )  

(g) 

Fig. 3. Superstructures determined in Table 2. 
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